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ABSTRACT Klebsiella pneumoniae (K. pneumoniae), a common nosocomial pathogen 
causing severe pulmonary infections, is often complicated by coinfections. Bacterial 
ghosts, which are empty bacterial cell envelopes, hold significant promise as vaccine 
adjuvants. This study aims to develop and evaluate a novel combination vaccine 
platform utilizing K. pneumoniae ghosts (KP ghosts) to explore their intrinsic immuno­
genic properties as both vaccine and natural adjuvants. In this study, we showed that 
KP ghosts enhanced maturation and activation of bone marrow-derived dendritic cells, 
increasing surface markers (CD40, CD80, CD86, and MHC II) and cytokine secretion (IL-1β, 
TNF-α, and IL-12p70). The KP ghost-based vaccine provided strong immune protection in 
mice, significantly improving survival rates and reducing bacterial loads in organs after 
bacterial challenge. Additionally, to assess the adjuvant potential of KP ghosts, C57BL/6 
mice were co-immunized with KP ghosts and a model antigen, ovalbumin (OVA). In 
comparison to OVA alone, the combination of OVA and KP ghosts elicited higher levels 
of specific IgG antibodies. Furthermore, OVA combined with KP ghosts increased the 
expression of the early activation marker CD69 on T cells after in vitro antigen stimulation 
and raised the frequencies of central memory T cells (Tcm) and CD4+ IFN-γ+ T cells. In 
conclusion, KP ghosts are effective as both vaccine and adjuvant components, enhanc­
ing the innate immune response of dendritic cells and the antigen-specific response of T 
cells. These findings highlight KP ghosts as a dual-purpose vaccine/adjuvant platform for 
broader antibacterial vaccine development.

KEYWORDS K. pneumoniae ghosts, dendritic cell maturation, antigen-specific 
response, vaccine adjuvant

I n international guidelines, bacteria resistant to more than three classes of antibiotics 
are defined as multidrug-resistant (MDR) (1). ESKAPE pathogens, including Entero­

coccus faecium (E. faecium), Staphylococcus aureus (S. aureus), Klebsiella pneumoniae 
(K. pneumoniae), Acinetobacter baumannii (A. baumannii), Pseudomonas aeruginosa (P. 
aeruginosa), and Enterobacter species, represent a group of MDR bacteria that pose a 
serious threat to human health (2). These pathogens have attracted widespread scientific 
attention globally, highlighting the urgent need for developing new vaccines against 
them.

A microbiological report from a tertiary hospital in China, covering 2012–2021, 
found that the most frequently isolated bacteria from respiratory specimens were A. 
baumannii, K. pneumoniae, and P. aeruginosa (3). These pathogens often cause single 
or mixed infections, leading to various respiratory diseases. Besides lung diseases, K. 
pneumoniae and other pathogens can also infect the lower biliary tract, urinary tract, 
surgical wounds, and bloodstream (4). Gram-negative bacteria accumulate antimicrobial 
resistance (AMR) genes through the transfer of plasmids and genetic elements (5). 
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Data show that over 400 AMR genes have been identified in various K. pneumoniae 
genomes, significantly more than in other gram-negative bacteria (6). K. pneumoniae 
naturally produces enzymes that hydrolyze β-lactam antibiotics, including ampicillin 
and amoxicillin. The extended-spectrum β-lactamase resistance in K. pneumoniae has 
led to widespread use of carbapenem antibiotics, likely resulting in the emergence of 
carbapenemase-producing K. pneumoniae (7). The emergence of the colistin resistance 
gene mcr-1 in K. pneumoniae has nearly exhausted treatment options for MDR-KP (8). 
This issue is also affecting other gram-negative bacteria, with increasing resistance 
mechanisms observed in A. baumannii and P. aeruginosa.

Although several vaccine targets have been proposed in recent decades (9–12), 
no vaccine against K. pneumoniae  or other Enterobacteriaceae  has been licensed to 
date. K. pneumoniae  bacterial capsule polysaccharide has been investigated as a 
vaccine target. TonB-dependent transporters involved in immune responses to these 
pathogens have been recently studied (10). Outer membrane proteins (OMPs) are 
candidate vaccine targets in both A. baumannii  (13) and A. hydrophila  (14).  However, 
candidate vaccine strategies often fail  in clinical settings due to safety concerns and 
insufficient immune protection. Therefore, safe and effective vaccine adjuvants are 
essential.

Bacterial ghosts (BGs) have been shown to be safe and effective as non-living 
vaccines against various infectious diseases (15–18). Controlled expression of the 
phiX174 lysis gene E in BG cells forms transmembrane tunnels, causing expulsion 
of cytoplasm containing the genome and plasmids (15, 18). Even highly sensitive 
and fragile structures, such as pili, remain intact after ghost formation (19). Without 
physically or chemically destroying the outer membrane, the membrane retains its 
antigenic structure similar to that of living bacteria. Additionally, bacterial cells provide 
an excellent platform for delivering immunogenic antigens (20), and bacterial mem­
brane components, such as lipopolysaccharides, peptidoglycans, and lipid A, possess 
adjuvant properties (21). These studies demonstrate the adjuvant properties of BGs, 
establishing them as a promising new vaccine platform. Dendritic cells (DCs) are crucial 
antigen-presenting cells (APCs) that bridge the innate and adaptive immune responses. 
Upon activation and maturation, DCs undergo phenotypic and functional changes that 
enhance their ability to migrate to lymph nodes and activate downstream T lympho­
cytes. In this study, we developed a new vaccine strategy using K. pneumoniae ghosts 
(KP ghosts) and evaluated its dual immunogenic functions serving as a vaccine and an 
intrinsic adjuvant in vitro and in vivo. Utilizing murine immunization models, we assessed 
the protective efficacy of KP ghosts against infection and characterized their antigen 
presentation capabilities.

MATERIALS AND METHODS

Plasmid constructs, bacterial isolates, and animals

The plasmid pBBR1MCS-E, which carries the gene E from bacteriophage and the 
thermo-sensitive lambda pL/pR-cI857, was constructed following established procedures 
(22). Clinical isolate K. pneumoniae strain T952 was cultured at 37°C in Luria-Bertani (LB) 
agar or broth. Six-week-old C57BL/6 mice were obtained from the Comparative Medicine 
Centre of Yangzhou University, China.

Production of KP ghosts

KP ghosts were produced as previously described (22). Briefly, K. pneumoniae strain 
T952 competent cells were transformed with pBBR1MCS-E using electroporation. Positive 
transformants were confirmed by restriction enzyme digestion and PCR. For KP ghosts 
production, single colonies were grown into LB broth (50 µg/mL kanamycin) at 28°C until 
the OD600 was approximately 0.5, then induced at 42°C. Subsequently, KP ghosts were 
harvested and lyophilized.
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Generation and stimulation of bone marrow-derived dendritic cells (BMDCs)

BMDCs were generated by culturing bone marrow cells harvested from C57BL/6 mice 
as previously described (22, 23). The purity of BMDCs was approximately 85% based on 
flow cytometric analyses. The harvested BMDCs were seeded into 24-well plates and 
treated with KP ghosts (5 × 105 CFU), KP ghosts (5 × 106 CFU), KP ghosts (5 × 107 

CFU), or LPS (100 ng/mL) for 48 h at 37°C. Expression of surface molecules on BMDCs 
was determined by incubating BMDCs with FITC-CD86, PE-CD80, PE-CD40, FITC-MHC-II, 
PerCP-Cy5.5 CD69, and PE-CCR7 antibodies (all from eBioscience, USA) for 30 min at 4°C. 
The cell samples were harvested, washed, and analyzed by flow cytometry (FCM) using 
FlowJo software (BD Biosciences, USA).

Endocytosis assay

The BMDCs were incubated with 1 mg/mL FITC-Dextran at 37°C for 30 min as previously 
described (24). Subsequently, BMDCs were washed two times with PBS and analyzed 
using FCM. Additionally, a control at 4°C was conducted to rule out adhesion effects.

Allogeneic mixed lymphocyte reaction (MLR) assay

Male BALB/c mice, aged 6 weeks, were obtained from the Animal Research Center at 
Yangzhou University in Jiangsu, China. Responder T cells were purified from splenic 
lymphocytes using a CD4+ T-cell isolation kit (Miltenyi Biotec, Germany) and labeled 
with CFSE (Thermo Fisher Scientific, USA) following the manufacturer’s protocol. Purified 
T cells were co-cultured with BMDCs at a 1:1 ratio in complete RPMI-1640 medium 
supplemented with 10% fetal bovine serum (FBS) under 5% CO2 at 37°C for 5 days and 
analyzed using FCM.

Cell viability assay

KP ghosts cytotoxicity assay was conducted in BMDCs using the CCK-8 kit (Jiancheng 
Biotech, Nanjing, China) following the manufacturer’s protocol. Briefly, the cells were 
cultured in 96-well plates and stimulated with KP ghosts at cell-to-ghost ratios of 1:1, 
1:10, 1:100, and 1:200. Non-stimulated cells served as the negative control. After 48 h of 
incubation at 37°C, 10 µL of CCK-8 was added per well, followed by incubation for 1 h. 
Absorbance at 450 nm was measured, and results were compared relative to the control 
group.

Cytokine assay

BMDCs were cultured in vitro with KP ghosts or LPS for 24 h, followed by quantification 
of TNF-α, IL-1β, and IL-12p70 levels in the culture supernatants using enzyme-linked 
immunosorbent assay (ELISA) kits (Dakewe Biotech Co., Ltd., China) according to the 
manufacturer’s instructions.

Bacterial challenge in immunized mice

Six-week-old C57BL/6 mice were divided into three groups, each of which included 15 
mice. The mice were respectively immunized with PBS, KP ghosts (1 × 107 CFU/animal),
and KP formalin (1 × 107 CFU/animal) with an initial vaccination at week 0, followed by 
boosts at weeks 2 and 4. In the challenge experiment, immunized mice were infected 
with K. pneumoniae T952 at a dose of 1 × 108 CFU/animal at week 6. Body weight 
changes and survival rates were monitored for 12 days post-infection in each group of 
10 mice. For the organ bacterial load experiment, immunized mice were infected with K. 
pneumoniae T952 at a dose of 2 × 107 CFU/animal in week 6. At 48 h post-infection, mice 
were euthanized, and lungs and spleens were collected. The organs were homogenized, 
filtered, and resulting homogenates were serially diluted before plating on LB agar 
plates. Plates were incubated at 37°C for 12 h for bacterial colony enumeration.
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Immunization with ovalbumin (OVA) antigen and KP ghosts adjuvants in 
mice

Six-week-old C57BL/6 mice were randomly divided into five groups: A, B, C, D, and E. 
Group A mice were immunized subcutaneously with sterile PBS as a control. Group B 
mice were immunized subcutaneously with 1 × 107 CFU of KP ghosts. Group C mice 
were immunized subcutaneously with 50 µg of OVA antigen (Sigma). Group D mice were 
immunized subcutaneously with 50 µg of OVA antigen plus 1 × 107 CFU of KP ghosts. 
Group E mice were immunized subcutaneously with 50 µg of OVA antigen and aluminum 
hydroxide (alum) adjuvant (Biodragon, China). All mice received three immunizations at 
2-week intervals. Two weeks after the final immunization, serum and spleen samples 
were collected for immunological analysis.

ELISA

ELISA was performed to determine antibody levels as previously described (25), with 
minor modifications. Briefly, 96-well ELISA plates were coated overnight at 4°C with 100 
µL of OVA (5 µg/mL) in carbonate-bicarbonate buffer (pH 9.6). After washing with PBST 
(PBS containing 0.05% Tween), the plates were blocked with PBS containing 10% FBS 
for 4 h at 37°C. After washing, serial dilutions of serum samples were added to the wells 
and incubated for 2 h at 37°C. The plates were then washed, and HRP-conjugated goat 
anti-mouse IgG antibody (1:8,000, Abcam) was added and incubated for 1 h at 37°C. 
After another wash, tetramethylbenzidine (Solarbio, Beijing, China) was added to each 
well. Finally, the reaction was stopped by adding 2 M H2SO4, and the OD450 values were 
measured using an ELISA plate reader. Antibody titers were reported as the logarithm of 
the reciprocal of the highest serum dilution with an OD value equal to or greater than 2.1 
times the negative control.

FCM analysis of memory T cells

Single-cell suspensions from spleens were prepared as described previously. The spleen 
cells were seeded into 24-well plates and treated with OVA (30 µg/mL) for 48 h. 
After antigen stimulation, the cells were incubated with APC-Cy7-conjugated anti-CD3, 
PE-conjugated anti-CD4, APC-conjugated anti-CD8α, FITC-conjugated anti-CD44, and 
PE-Cyanine7-conjugated anti-CD62L antibodies at 4°C for 30 min to analyze T-cell 
subpopulations. T-cell activation was assessed by incubating the cell suspensions 
with FITC-conjugated anti-CD3, PE-conjugated anti-CD4, APC-conjugated anti-CD8, and 
PerCP-Cy5.5-conjugated anti-CD69 antibodies (all from eBioscience) at 4°C for 30 min. 
After washing, the cells were analyzed using a flow cytometer and FlowJo software (BD 
Biosciences).

Intracellular cytokine staining

Intracellular cytokine staining was conducted using the Cytofix/Cytoperm kit (BD 
Biosciences) according to the manufacturer’s protocol. Briefly, splenocytes were 
stimulated with OVA antigen for 48 h. Brefeldin A (BD Biosciences) was added during 
the last 5 h of stimulation to inhibit protein transport. The splenocytes were then 
incubated with FITC-conjugated anti-CD3 and APC-conjugated anti-CD4 antibodies at 
4°C. Subsequently, the cells were stained with PE-conjugated anti-IFN-γ or PE-conjugated 
anti-IL-4 antibodies (all from eBioscience) to detect intracellular cytokines. Samples were 
analyzed using a flow cytometer and FlowJo software (BD Biosciences).

Statistical analysis

Statistical analyses were conducted using GraphPad Prism 7.04 (GraphPad Software, Inc., 
La Jolla, CA, USA). One-way analysis of variance (ANOVA) with Tukey’s post hoc test 
was used to compare multiple groups. Unpaired two-sided Student’s t-test was used to 
compare two groups. P < 0.05 was considered statistically significant, and P < 0.01 was
deemed highly significant.
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RESULTS

Enhanced phenotypic maturation of BMDCs by KP ghosts

To produce KP ghosts, we constructed the lysis plasmid p-EBOX containing the E lysis 
cassette and transformed it into K. pneumoniae strain T952. The temperature was 
increased to 42°C to induce the KP ghosts production. DC phenotypic maturation 
is characterized by the expression of CD80, CD86, CD40, and MHC-II (26). BMDCs 
were incubated with either LPS or varying doses of KP ghosts, and the expression of 
phenotypic markers was assessed using FACS. Treatment with KP ghosts significantly 
upregulated surface expression of maturation markers (CD80, CD86, CD40, and MHC-II) 
on BMDCs compared to untreated controls (Fig. 1A and B). Notably, the upregulatory 
effects were dose-related, with the 10:1 KP ghosts-to-BMDC ratio inducing the most 
potent expression for CD40 and a significantly greater expression of CD86 than the 1:1 
ratio. However, the maximal response for each marker was achieved at different doses, 
indicating a complex dose-response relationship rather than a simple linear dependency. 
These findings demonstrate that KP ghosts effectively promote phenotypic maturation 
of BMDCs.

Enhancement of BMDCs functionality by KP ghosts

The toxicity of KP ghosts was assessed in murine DCs. Cells were treated with KP 
ghosts, and cell viability/metabolic activity was evaluated using the CCK-8 assay. Results 
showed that KP ghost treatment did not reduce cell viability; instead, a modest increase 
in metabolic activity was observed after 48 h of incubation (Fig. 2I). Inflammatory 
stimuli induce maturation in BMDCs, characterized by downregulation of endocytosis 
(27). The fluorescent marker dextran was used to assess whether KP ghosts modulated 
BMDC endocytosis. As depicted in Fig. 2A and E, KP ghosts significantly reduced BMDC 
endocytosis compared to the untreated control, with LPS as a positive control.

FIG 1 Expression of phenotypic markers on dendritic cells stimulated with KP ghosts in vitro. (A, B) Flow cytometry analysis of phenotypic markers MHC-II, CD40, 

CD80, and CD86 on BMDCs was performed after 48 h of stimulation with various proportions of KP ghosts or 100 ng/mL LPS. KP ghosts 1: KP ghosts to BMDCs 

ratio of 1:1; KP ghosts 10: ratio of 10:1; KP ghosts 100: ratio of 100:1. n = 3 per group. Data shown are from one representative experiment of three independent 

replicates. Values are expressed as mean ± standard deviation. Statistical significance was determined using one-way ANOVA. ns, P > 0.05; *P < 0.05; and **P < 

0.01.
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After 48 h of incubation with KP ghosts, BMDCs showed enhanced CD69 expres­
sion, indicating activation (Fig. 2B and F). Inflammatory mediators stimulate BMDC 
maturation and migration from non-lymphoid to lymphoid organs to initiate T-cell-medi­
ated immune responses. This migration is closely associated with BMDC expression 
of CCR7 (28). Expression levels of CCR7 in BMDCs were analyzed by FCM to assess 
whether KP ghosts modulated BMDC migration. As shown in Fig. 2C and G, CCR7 
expression significantly increased in all KP ghosts-treated groups, with no significant 
differences between groups. Furthermore, levels of secreted IL-1β, IL-12p70, and TNF-α 
were significantly higher in KP ghosts-treated BMDCs compared to untreated cells (Fig. 
2J, K and L). Overall, KP ghosts enhanced BMDC activation, migration capability, and 
pro-inflammatory cytokine response.

DCs are potent stimulators of allogeneic T-cell proliferation in the MLR (29). To assess 
the effects of KP ghosts on MLR stimulation ability, BMDCs were collected and co-cul­
tured with allogeneic CD4+ T cells. As depicted in Fig. 2D and H, KP ghosts-induced 
BMDCs effectively stimulated proliferative responses compared to untreated BMDCs. 

FIG 2 BMDCs were stimulated with various proportions of KP ghosts or 100 ng/mL LPS to assess endocytosis, activation and migration phenotypes, and 

cytokine responses. Additionally, the proliferative effects of stimulated dendritic cells on allogenic T cells were evaluated. (A, E) After 48 h of stimulation with KP 

ghosts or LPS, treated BMDCs were incubated with 1 mg/mL FITC-Dextran at 37°C for 30 min. Endocytosis was assessed by flow cytometry, with LPS serving as a 

positive control. (B, F) CD69 expression was measured by flow cytometry in treated BMDCs after 48 h of stimulation with KP ghosts or LPS. (C, G) CCR7 expression 

was measured by flow cytometry in treated BMDCs after 48 h of stimulation with KP ghosts or LPS. (D, H) After 48 h of KP ghosts or LPS stimulation, treated 

BMDCs were co-cultured with CFSE-labeled naive CD4+ allogenic T cells at a 1:1 ratio (1 × 105 T cells per well). Cell proliferation was assessed by flow cytometry 

after 5 days. (I) BMDCs were stimulated with KP ghosts at ratios of 1:1, 1:10, 1:100, and 1:200 for 48 h. Cell viability was then measured using the CCK-8 assay. (J, K, 

L) After 48 h, the BMDC supernatant was collected, and cytokine levels (IL-1β, IL-12p70, and TNF-α) were measured using an ELISA kit. KP ghosts 1: KP ghosts to 

BMDCs ratio of 1:1; KP ghosts 10: ratio of 10:1; KP ghosts 100: ratio of 100:1. n = 3–4 per group, as indicated. Data shown are from one representative experiment 

of three independent replicates. Values are expressed as mean ± standard deviation. Statistical significance was determined using one-way ANOVA. ns, P > 0.05; 

*P < 0.05; and **P < 0.01.
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A ratio of 1:10 BMDCs to KP ghosts stimulates MLR more effectively than a 1:1 ratio. 
These results suggest that KP ghosts significantly enhance the allostimulatory capacity of 
BMDCs.

Protective efficacy of KP ghosts against K. pneumoniae challenge

At weeks 0, 2, and 4, mice were immunized with PBS, KP ghosts (1 × 10⁷ CFU/animal), 
or KP formalin (1 × 10⁷ CFU/animal), followed by a 2-week resting period. At week 6 
post-initial immunization, all groups were challenged with a lethal dose of K. pneumoniae 
strain T952 via intraperitoneal injection (Fig. 3A). Mice in the control group exhibited 
severe symptoms, including rapid weight loss, and had an 80% mortality rate. In contrast, 
the KP ghosts group showed only a few cases of illness, with no significant weight 
loss, and had a 20% mortality rate. The KP formalin group had a mortality rate of 30% 
(Fig. 3B and C). To further assess the protective efficacy of KP ghost vaccination, mice 
were challenged with a sub-lethal dose of K. pneumoniae, and bacterial burdens in the 
lung and spleen were determined. Our results showed that organ bacterial loads in the 
immunized groups were significantly lower than those in the control group (Fig. 3D and 
E).

Enhanced induction of OVA-specific IgG antibodies by KP ghosts

To investigate the role of KP ghosts in inducing OVA-specific humoral immune responses, 
we developed a mouse model using OVA as the target antigen. Alum served as the 
positive control, and PBS served as the negative control. OVA-specific IgG antibodies 
in the peripheral blood serum of the immunized mice were measured by ELISA. Mice 
immunized with KP ghosts + OVA or Alum + OVA exhibited significantly higher IgG 
antibody responses compared to those receiving only OVA. KP ghosts demonstrated 
adjuvant-like functions similar to alum, leading to increased specific antibody levels 
and humoral immune responses compared to OVA alone. No antibody response was 
observed in the PBS group (Fig. 4).

Effects of KP ghosts on T-cell populations and activation

To further evaluate the effect of KP ghosts on T-cell populations, we conducted flow 
cytometric analysis to determine the proportions of central memory T cells (CD44hi 

CD62Lhi) and effector memory T cells (CD44hi CD62Llo) in the spleens of immunized mice 
following antigen stimulation. After in vitro culture of splenocytes and stimulation with 
OVA for 48 h, KP ghosts + OVA-immunized mice showed a significant increase in the 
percentage of CD4+ CD44hi CD62Lhi and CD8+ CD44hi CD62Lhi T cells compared to the 
OVA-only group (Fig. 5A, D and E). This indicates an expansion of the central memory 
T-cell population in response to OVA-specific antigen stimulation.

To evaluate T-cell activation, we measured the expression of the early activation 
marker CD69 using flow cytometry. Figure 5B, F and G show that the frequency of CD4+ 

CD69+ T cells was significantly higher in the KP ghosts + OVA group compared to the 
OVA-only group, while no significant difference was observed in the frequency of CD8+ 

CD69+ T cells. This suggests a marked activation of CD4+ T cells in the KP ghosts + OVA 
group following stimulation with OVA-specific antigen.

Next, we performed intracellular cytokine staining to measure IFN-γ and IL-4 
production in CD4+ T cells from the spleen. Figure 5C, H and I show that the percentage 
of CD4+ IFN-γ+ cells in the KP ghosts + OVA group was significantly higher than in the 
OVA-only group, while there was no significant difference in the percentage of CD4+ 

IL-4+ cells between the groups. These results suggest that KP ghosts enhance IFN-γ 
production by CD4+ T cells in response to OVA-specific antigen stimulation, without 
affecting IL-4 production.
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DISCUSSION

K. pneumoniae is a prevalent nosocomial pathogen responsible for pneumonia, urinary 
tract infections, and surgical wound infections. It is highly resilient and resistant to 
antibiotics. The accumulation of AMR over time has worsened resistance, highlighting 
the need for effective vaccine strategies to combat K. pneumoniae.

BGs are a novel type of inactivated vaccine, characterized by their surface trans­
membrane channels and leakage of nucleic acids and proteins. Compared to tradi­
tional vaccines, BGs differ significantly in proteomics and antibody profiles, enriched 
in immune proteins such as OMPs, heat shock proteins, and SodC. The immune response 
induced by BGs also differs markedly (30). BGs preserve sensitive and fragile structures, 

FIG 3 KP ghosts offer enhanced specific immune protection compared to the inactivated K. pneumoniae vaccine. (A) Establishment of the mouse infection 

model. Six-week-old C57BL/6 mice received three intraperitoneal booster doses of identical vaccine components at 2-week intervals over 6 weeks. At 6 weeks 

post-immunization, mice were intraperitoneally challenged with K. pneumoniae to establish the peritoneal infection model. (B, C) Two weeks after the third 

immunization, mice were intraperitoneally challenged with a lethal dose of K. pneumoniae strain T952. (B) Body weight changes of surviving mice over 

12 days post-infection for each group. (C) Survival rates and survival curves. n = 10 mice per group. (D, E) Two weeks after the third immunization, mice 

were intraperitoneally challenged with a sub-lethal dose of K. pneumoniae strain T952. (D) Bacterial colony counts from lung homogenates prepared 48 h 

post-infection, plated on LB agar. (E) Bacterial colony counts from spleen homogenates, also prepared 48 h post-infection. Data were presented as the mean 

± standard deviation and are representative of three independent experiments (n = 5 mice per group). Statistical significance was determined using one-way 

ANOVA. ns, P > 0.05; *P < 0.05; and **P < 0.01.
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such as pili, during their gentle preparation process, unlike traditional vaccines, which 
often cause physical or chemical damage (31). Scanning electron microscopy reveals 
that BGs retain their complete cell structures and exhibit transmembrane channels, 
distinguishing them from the original strains (32).

Toll-like receptors (TLRs) are critical in developing new vaccines by initiating immune 
responses against pathogens (33). BGs, which have surface structures resembling live 
bacteria and contain TLR agonists, are effectively recognized by APCs. BGs can function 
as potent vaccines or adjuvants, inducing robust immune responses. Studies show 
that DCs mature with increased expression of surface markers such as CD40, MHC-II, 
CD80, and CD86 (34), reduced endocytosis, and increased cytokine release (35, 36). 
After maturation, DCs also exhibit increased CCR7 expression (37), which enhances 
their migration to lymph nodes for antigen presentation. KP ghosts stimulate BMDCs 
to upregulate surface markers and migration molecules and enhance cytokine secre­
tion and T-cell proliferation. At a BMDCs to KP ghosts ratio of 1:10, BMDC maturation 
is maximized, with no significant difference compared to the 1:100 ratio. Excessive 
antigen levels may cause adverse vaccine reactions (38). Therefore, the 1:10 ratio of 
KP ghosts is identified as the optimal dose in this study. These findings suggest that KP 
ghosts effectively promote BMDC maturation, exhibit strong immunogenicity, and are a 
valuable reference for candidate vaccines or adjuvants.

FIG 4 KP ghosts induced higher IgG antibody levels compared to the OVA antigen alone. Mice were 

divided into five groups and immunized with PBS, KP ghosts, OVA, KP ghosts + OVA, or Alum + OVA. All

groups received three immunizations at 2-week intervals. Two weeks after the final immunization, serum 

samples were collected and analyzed by ELISA to determine OVA-specific IgG antibody levels. Data were 

presented as the mean ± standard deviation and are representative of three independent experiments (n 

= 5 mice per group). Statistical significance was determined using one-way ANOVA. ns, P > 0.05; *P < 0.05; 

and **P < 0.01.
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FIG 5 KP ghosts markedly enhance T cell-specific antigen recognition, promote the proliferation or differentiation of 

antigen-specific Tcm, and increase CD4+ T-cell activation and IFN-γ release. (A, D, E) Two weeks after the final immunization, 

splenocytes were collected and stimulated with OVA for 48 h. Flow cytometry was employed to analyze antigen-specific

(Continued on next page)
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BGs have been proven to safely and effectively prevent a range of infectious diseases 
(39, 40). This study shows that KP ghosts provide strong immune protection in mice, 
achieving an 80% survival rate under lethal bacterial challenge, compared to 20% in the 
control group. Bacterial load is a key parameter for assessing murine infection models 
(41). Both KP ghosts and inactivated vaccines reduce bacterial loads in the lungs and 
spleen of mice, providing significant immune protection.

Naive T cells are activated and differentiate into distinct phenotypes—central 
memory T cells (Tcm: CD44hi CD62Lhi) and effector memory T cells (Tem: CD44hi CD62Llo)
—upon initial antigen or infection stimulation (42, 43). Tem cells migrate to inflamed 
peripheral tissues to mediate protective memory and provide immediate defense, 
whereas Tcm cells return to secondary lymphoid organs to mediate secondary respon­
ses and offer long-term protection (44, 45). Two weeks after immunization, without 
further antigen stimulation, mouse immune cells stabilize, and no significant differences 
are observed among splenic memory T-cell subsets. Re-stimulation with OVA antigen 
in vitro induces proliferation and activation of antigen-specific memory T cells. This 
study found that the KP ghosts + OVA group had a significantly higher frequency of 
CD4+ and CD8+ Tcm subsets compared to the OVA group. The expansion of central 
memory T cells correlates with improved local immune protection (46). Notably, we 
observed the emergence of a CD44lo CD62Llo population after 48 h of in vitro culture. 
This atypical subset is rarely present in freshly isolated splenocytes, which displayed 
the expected distribution of naive (CD44lo CD62Lhi), effector memory (CD44hi CD62Llo), 
and central memory (CD44hi CD62Lhi) T cells. While the precise biological significance of 
this population remains unclear, it may reflect culture-induced stress, altered activation 
dynamics, or functional exhaustion and warrants further investigation. Importantly, 
within the same baseline, our data robustly demonstrate that combined immunization 
significantly upregulated the CD44hi CD62Lhi Tcm subset in mouse splenocytes following 
antigen stimulation.

After OVA stimulation, CD69 expression in CD4+ T cells was significantly higher in 
the KP ghosts + OVA group compared to the OVA group, indicating antigen-specific 
activation of CD4+ T cells, with no similar increase in CD8+ T cells. Additionally, IFN-γ 
secretion in activated CD4+ T cells increased significantly, with no corresponding rise in 
IL-4. CD4+ T helper (Th) cells comprise subsets including Th1, Th2, and Th17. Th1 cells 
release IFN-γ and express T-BET, which is involved in type I immune responses (47, 48). 
In this study, KP ghosts as an adjuvant increased IFN-γ secretion in OVA-specific CD4+ 

T cells, skewing the response toward a Th1-type reaction. This suggests that using KP 
ghosts as an adjuvant may enhance vaccine efficacy in clearing intracellular bacteria 
and viruses, offering potential clinical benefits. In conclusion, our research shows that 
KP ghosts as an adjuvant effectively enhance antigen-specific Tcm expansion, activate 
cellular immunity, and induce CD4+ T-cell activation and IFN-γ release, thereby promot­
ing adaptive memory immune responses against pathogens.

KP ghosts significantly enhance the immunogenicity of the OVA antigen when used 
as an adjuvant, boosting antibody levels and elevating CD4+ T-cell immune responses. 
However, the mechanisms underlying this enhancement remain unclear. These ghost 
particles contain substantial amounts of LPS, lipoproteins, peptidoglycans, and pili. 

Fig 5 (Continued)

T-cell populations. (A) Representative FACS plots of CD44hi CD62Lhi Tcm in immunized mice. (D and E) Percentages of Tcm 

(CD44hi CD62Lhi) among CD4+ and CD8+ T cells, respectively. (B, F, G) Splenocytes were isolated and stimulated as in panel 

A to assess early T-cell activation. (B) Representative flow cytometry plots of CD69 expression on CD4+ and CD8+ T cells. (F, 

G) Quantification of the percentage of CD69+ cells among CD4+ (F) and CD8+ (G) T cells. (C, H, I) Splenocytes were isolated and 

stimulated as in panel A to analyze antigen-specific cytokine production. (C) Representative flow cytometry plots of IFN-γ and 

IL-4 production by CD4+ T cells. (H, I) Quantification of the percentage of IFN-γ+ (H) and IL-4+ (I) cells among CD4+ T cells. Data 

were presented as the mean ± standard deviation and are representative of three independent experiments (n = 4–5 mice per 

group). Statistical significance was determined using one-way ANOVA. ns, P > 0.05; *P < 0.05; and **P < 0.01.
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These pathogen-associated molecular patterns (PAMPs) (49) are recognized by pattern 
recognition receptors on immune cells. The recognition of these PAMPs stimulates the 
production of various immune mediators and promotes the maturation of APCs. For 
instance, LPS activates TLR4 via MyD88-dependent or MyD88-independent pathways 
(50, 51), leading to DC maturation and the differentiation of T cells into Th1 cells (52). 
Additionally, ghosts can protect internal molecules from degradation and gradually 
release them at the cell membrane. This property may facilitate the targeted delivery of 
nucleic acids, proteins, and chemical drugs (53, 54). Furthermore, studies indicate that 
live or inactivated forms of bacteria, such as BCG and A. baumannii, can induce cross-pro­
tective effects against other pathogens, a phenomenon known as trained immunity 
(55, 56). Considering the role of KP ghosts in enhancing vaccine immunogenicity and 
their potential for cross-protective immunity, further investigation into their mechanisms 
as a vaccine formulation could clarify their functions and offer valuable insights for 
developing new vaccines. Understanding these mechanisms may refine strategies for 
developing vaccines that utilize ghost-based adjuvants.

In summary, our research highlights the significant role of the KP ghosts in enhanc­
ing the innate immune response of BMDCs and their effectiveness in preventing K. 
pneumoniae infections while alleviating associated symptoms. The evaluation of a 
combined vaccine strategy, utilizing the KP ghosts as an adjuvant alongside recombi­
nant antigen OVA, demonstrated the ability to induce a strong T-cell adaptive immune 
response, improve antigen immunogenicity, and significantly boost OVA antibody levels. 
These findings offer valuable insights and strategies for the future development of 
vaccines targeting K. pneumoniae and other clinical pathogens.
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